Preview

Philosophical Problems of IT & Cyberspace (PhilIT&C)

Advanced search

Connectionist extension of irreducible computation model: part 2

https://doi.org/10.17726/philIT.2016.12.2.4

Abstract

The specificity of five main connectionist systems is considered. Connectionist model of computation deploys minimal (irreducible) model introduced by the author in the first part. It is a synthesis of neural network models, cellular automata and distributed system, based on the works of Rosenbluth, Rosenblatt and Rummelhart respectively. As part of the proposed model two-stage (inspiration / expiration) concept of connectionist computing systems operation is introduced. The model is equally suitable for discrete and continuous time but closer to the latter in terms of formalization. The attention is focused on the aspects of decentralization, non-directionality, activity and selectivity (in elements) of computability. We propose the concept of active layer, which follows from the separation of unit state into two components: conditionally - “data” and “action flag” / “choice”. Occurring in the active layer processes determine largely the entire computing process

About the Author

I. V. Matyushkin
Institute of Design Problems in Microelectronics RAS
Russian Federation


References

1. Матюшкин И. В. Коннекционистское расширение минимальной модели вычислений (Часть 1) // Философские проблемы информационных технологий и киберпространства, 2016. № 1, vol. 11. - 103-120. DOI 10.17726/philIT.2016.11.1.004.27

2. Rumelhart D., McClelland J., and the PDP Research Group, editors. Parallel Distributed Processing, volume 1: Foundations. MIT Press, Cambridge, MA, 1986.

3. Bechtel W., Abrahamsen A. Connectionism and the Mind: An Introduction to Parallel Processing in Networks. Blackwell, Cambridge, MA, 1991.

4. Розенблатт Ф. Принципы нейродинамики: перцептроны и теория механизмов мозга. М.: Издательство «МИР», 1965.

5. Хайкин С. Нейронные сети. Полный курс. Второе издание. Москва Санкт-Петербург-Киев, 2006

6. Фон Нейман Дж. Теория самовоспроизводящихся автоматов. М.: Мир, 1971. - C. 382

7. Ulam P. Random Processes and Transformations // Proceedings Int. Congr. Mathem. 1952. № 2. P. 264-275.

8. Винер Н., Розенблют А. Проведение импульсов в сердечной мышце. Математическая формулировка проблемы проведения импульсов в сети связанных возбудимых элементов, в частности в сердечной мышце. // Кибернетический сборник. Вып. 3. М.: Изд. иностр. лит., 1961. - C. 7-56

9. Матюшкин И., Коробов С., Вильданов Р. Особенности гексагональных клеточных автоматов на плоской поверхности для задач нанотехнологии // Нанофизика и нанотехнологии. Труды МФТИ. 2014. Том 6. № 1. - С. 72-80

10. Кудрявцев В., Подколзин А., Болотов А. Основы теории однородных структур. М.: Москва, 1990. - 296 c

11. Аладьев В. Классические однородные структуры. Клеточные автоматы. FultusBooks, 2009

12. Kari J. Theory of cellular automata: A survey // Theoretical Computer Science. 2005. 334. - P. 3-33.

13. Жизнь на плоскости Лобачевского. http://habrahabr.ru/post/168421/

14. Margenstern M. Small Universal Cellular Automata in Hyperbolic Spaces. A Collection of Jewels. Springer, 2013. - 327 p.

15. Joseph L. McCauley Z. Chaotic Dynamical Systems as Automata Naturforsch, 1987. - P. 547-555.

16. Siwak P. Iterons, fractals and computations of automata // AIP Conference Proceedings. 1999. No. 465. - P. 367-394.

17. Chua L. Cellular neural networks: theory // IEEE Transactions on Circuits and Systems (IEEE), CAS-35, No. 10, 1988. - P. 1257-1272.

18. Voroshazi Z. Investigation of emulated-digital CNN-UM architectures: retina model and cellular wave computing architecture implementation on FPGA // Phd Thesis, Univ. of Pannonia, Poland, 2009. - 109 p.

19. Baatar Ch., Porod W., Roska T. Cellular Nanoscale Sensory Wave Computing. Springer, 2009. - 257 p.

20. Ercsey-Ravasz M. Applications of Cellular Neural/Nonlinear Networks in Physics // Thesis submitted for the degree of Doctor of Philosophy Babeş- Bolyai University, Faculty of Physics Budapest, 2008

21. Коваленко В., Корягин Д. Грид: истоки, принципы и перспективы развития // Информационные технологии и вычислительные системы. 2008. № 4. - C. 38-50.

22. Stempkovsky A. L., Vlasov P. A., Kozin G. V. Algorithmic Environment for VLSI Design on Cellular Automata // Proceedings of a Joint Symposium: Information Processing and Software, Systems Design Automation, Academy of Sciences of the USSR, Siemens AG, FRG, Moscow, June 5/6, 1990. Springer-Verlag. - P. 308-312


Review

For citations:


Matyushkin I.V. Connectionist extension of irreducible computation model: part 2. Philosophical Problems of IT & Cyberspace (PhilIT&C). 2016;(2):40-62. (In Russ.) https://doi.org/10.17726/philIT.2016.12.2.4

Views: 143


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-3763 (Online)