Естественные морфологические вычисления как основа способности к обучению у людей, других живых существ и интеллектуальных машин
https://doi.org/10.17726/philIT.2021.1.1
Аннотация
Современная натурфилософия динамично развивается как сфера науки и является основой для комплексного подхода к рассмотрению естественных, искусственных практик и социально-гуманитарного знания. Как теоретические, так и практические знания приобретаются, систематизируются, накапливаются в активном и пассивном виде в процессе обучения. В данной статье рассматривается взаимосвязь между современными достижениями в понимании процесса обучения в различных научных сферах: прикладных науках об искусственном интеллекте (глубокое обучение, робототехника), естественных науках (нейробиология, когнитивистика, биология) и философии (вычислительная философия, философия сознания, натурфилософия). Рассматривается вопрос о том, что именно может помочь текущему развитию машинного обучения и искусственного интеллекта на данном этапе, вдохновленному естественными процессами, в частности: вычислительными моделями, например информационно-вычислительными методами морфологических вычислений. Помимо этого рассматривается, в какой степени модели и эксперименты в области машинного обучения и робототехники могут стимулировать исследования в области вычислительной когнитивной науки, нейробиологии и природных вычислений. Мы предполагаем, что понимание механизмов формирования способности к обучению может стать важным шагом в развитии глубокого обучения в контексте вычисления/обработки информации в рамках подхода, объединяющего коннекционизм и символьный подход. Так как все естественные интеллектуальные системы являются когнитивными, мы приводим аргументы в пользу эволюционного подхода к изучению познавательных процессов. Из этого следует, что достижение человеческого уровня интеллекта для иных систем возможно только через эволюцию и развитие. Таким образом, данная статья представляет собой вклад в теорию познания в рамках современной философии природы.
Ключевые слова
Об авторе
Г. Додиг-ЦрнковичШвеция
Додиг-Црнкович Гордана, профессор, Технологический университет Чалмерса и Гетеборгский университет, факультет информатики и инженерии; Университет Мелардален,
Школа инноваций, дизайна и инженерии
Швеция, Гетеборг, 40482
Швеция, Вестерос, 721 23
Список литературы
1. Lecun Y., Bengio Y., Hinton G. Deep Learning. Nature. – 2015, 521, 436- 444; Rozenberg G., Kari L. The Many Facets of Natural Computing. Commun. ACM 2008, 51, 72-83.
2. Dodig-Crnkovic G. Nature as a network of morphological infocomputational processes for cognitive agents. Eur. Phys. J. Spec. Top. 2017.
3. Dodig-Crnkovic G. Cognition as Embodied Morphological Computation. In Philosophy and Theory of Artificial Intelligence; Studies in Applied Philosophy, Epistemology and Rational Ethics; Springer: Cham, Switzerland, 2018; Volume 44, pp. 19-23.
4. Bengio Y. From System 1 Deep Learning to System 2 Deep Learning (NeurIPS2019). Available online: https://www.youtube.com/watch?v=T3sxeTgT4qc (accessed on 24 June 2020).
5. Bengio Y. Scaling up deep learning. In Proceedings of the KDD ‘14: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; ACM: New York, NY, USA, 2014; p. 1966.
6. Bengio Y. The Consciousness Prior. arXiv 2019, arXiv:1709.08568v2.
7. Kahneman D. Thinking, Fast and Slow; Farrar, Straus and Giroux: New York, NY, USA, 2011; ISBN9780374275631.
8. Clark A. Microcognition: Philosophy, Cognitive Science, and Parallel Distributed Processing; MIT Press: Cambridge, MA, USA, 1989; ISBN978-0262530958.
9. Scellier B., Bengio Y. Towards a Biologically Plausible Backprop. arXiv 2016, arXiv:1602.05179, 1-17.
10. Minsky M. Logical vs. Analogical or Symbolic vs. Connectionist or Neat vs. Scruffy. In Artificial Intelligence at MIT, Expanding Frontiers; Winston, P.H., Ed.; MIT Press: Cambridge, MA, USA, 1990.
11. Dinsmore J. The Symbolic and Connectionist Paradigms; Psychology Press: New York, NY, USA; London, UK, 2014; ISBN978-0805810806.
12. Wang J. Symbolism vs. Connectionism: A Closing Gap in Artificial Intelligence. Available online: http://wangjieshu.com/2017/12/23/symbolvs-connectionism-a-closing-gap-in-artificial-intelligence/ (accessed on 28 June 2020).
13. Garcez A.D.A., Besold T.R., De Raedt L., Foldiak P., Hitzler P., Icard T., Kiihnberger K.U., Lamb L.C., Miikkulainen R., Silver D.L. Neuralsymbolic learning and reasoning: Contributions and challenges. In Proceedings of the AAAI Spring Symposium-Technical Report, Stanford, CA, USA, 23-25 March 2015; Dagstuhl Seminar 14381. Dagstuhl Publishing: Dagstuhl, Germany, 2015.
14. Floridi L. Informational realism. In Proceedings of the Selected Papers from Conference on Computers and Philosophy-Volume 37 (CRPIT ‘03); Weckert J., Al-Saggaf Y., Eds.; Australian Computer Society, Inc.: Darlinghurst, Australia, 2003. P. 7-12.
15. Dodig-Crnkovic G. Dynamics of Information as Natural Computation. Information 2011, 2, 460-477.
16. Dodig-Crnkovic G. Information, Computation, Cognition. Agency-Based Hierarchies of Levels. In Fundamental Issues of Artificial Intelligence. Synthese Library, (Studies in Epistemology, Logic, Methodology, and Philosophy of Science); Müller, V., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 141-159. ISBN9783319264851. Volume 376.
17. Dodig-Crnkovic G., Giovagnoli R. COMPUTING NATURE. Turing Centenary Perspective; Dodig-Crnkovic, G., Giovagnoli, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7, ISBN978-3-642- 37224-7.
18. Dodig-Crnkovic G. Physical computation as dynamics of form that glues everything together. Information 2012, 3, 204-218.
19. Froese T., Ziemke T. Enactive Artificial Intelligence: Investigating the systemic organization of life and mind. Artif. Intell. 2009, 173, 466-500.
20. Kauffman S. The Origins of Order: Self-Organization and Selection in Evolution; Oxford University Press: Oxford, UK, 1993; ISBN978- 0195079517.
21. Deacon T. Incomplete Nature. How Mind Emerged from Matter; W.W. Norton & Company: New York, USA, 2011; ISBN978-0-393- 04991-6.
22. Bateson G. Steps to an Ecology of Mind; University of Chicago Press: Chicago, IL, USA, 1973; ISBN9780226039053.
23. Floridi L. A defense of informational structural realism. Synthese 2008, 161, 219-253.
24. World Out of Information and Computation: Is God a Programmer, Not a Mathematician? In Exploring the Foundations of Science, Thought and Reality; Wuppuluri, S., Doria, F.A., Eds.; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
25. Dodig-Crnkovic G. Shifting the Paradigm of Philosophy of Science: Philosophy of Information and a New Renaissance. Minds Mach. 2003.
26. Maturana H. Biology of Cognition; Defense Technical Information Center: Urbana, IL, USA, 1970.
27. Maturana H., Varela F. Autopoiesis and cognition: The Realization of the Living; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1980.
28. Stewart J. Cognition = life: Implications for higher-level cognition. Behav. Process. 1996, 35, 311-326.
29. Ben-Jacob E. Bacterial Complexity: More Is Different on All Levels. In Systems Biology-The Challenge of Complexity; Nakanishi, S., Kageyama, R., Watanabe, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 25-35.
30. Ben-Jacob E. Learning from Bacteria about Natural Information Processing. Ann. N.Y. Acad. Sci. 2009, 1178, 78-90.
31. Lyon P. The cognitive cell: Bacterial behavior reconsidered. Front. Microbiol. 2015, 6, 264.
32. Marijuán P.C., Navarro J., del Moral R. On prokaryotic intelligence: Strategies for sensing the environment. BioSystems 2010.
33. Popper K. All Life Is Problem Solving; Routledge: London, UK, 1999; ISBN978-0415249928.
34. Baars B. J. Global workspace theory of consciousness: Toward a cognitive neuroscience of human experience. Prog. Brain Res. 2005, 150, 45-53.
35. Van Duijn M., Keijzer F., Franken D. Principles of Minimal Cognition: Casting Cognition as Sensorimotor Coordination. Adapt. Behav. 2006, 14, 157-170.
36. Århem P., Liljenström H. On the coevolution of cognition and consciousness. J. Theor. Biol. 1997.
37. Liljenström H., Århem P. Consciousness Transitions: Phylogenetic, Ontogenetic and Physiological Aspects; Elsevier: Amsterdam, The Netherlands, 2011; ISBN978-0-444-52977-0.
38. Dodig-Crnkovic G., von Haugwitz R. Reality Construction in Cognitive Agents through Processes of Info-Computation. In Representation and Reality in Humans, Other Living Organisms and Intelligent Machines; Dodig-Crnkovic, G., Giovagnoli, R., Eds.; Springer International Publishing: Basel, Switzerland, 2017; pp. 211-235. ISBN978-3-319- 43782-8.
39. Putnam H. Mathematics, Matter and Method; Cambridge University Press: Cambridge, MA, USA, 1975.
40. Dodig-Crnkovic G., Schroeder M. Contemporary Natural Philosophy and Philosophies. Philosophies 2018, 3, 42.
41. Dodig-Crnkovic G., Schroeder M. Contemporary Natural Philosophy and Philosophies-Part 1; MDPI AG: Basel, Switzerland, 2019; ISBN978-3- 03897-822-0.
42. Edmonds B., Gershenson C. Learning, Social Intelligence and the Turing Test. In How the World Computes. CiE2012. Lecture Notes in Computer Science; Cooper, S.B., Dawar, A., Löwe, B., Eds.; Springer: Berlin/ Heidelberg, Germany, 2012; Volume 7318.
43. Minsky M. The Society of Mind; Simon and Schuster: New York, NY, USA, 1986; ISBN0-671-60740-5.
44. Dennett D. From Bacteria to Bach and Back: The Evolution of Minds; W.W. Norton & Company: New York City, NY, USA, 2017; ISBN978-0- 393-24207-2.
45. Dodig-Crnkovic G. Investigations into Information Semantics and Ethics of Computing; Mälardalen University Press: Västerås, Sweden, 2006; ISBN91-85485-23-3.
46. Dodig-Crnkovic G., Müller V. A Dialogue Concerning Two World Systems: Info-Computational vs. Mechanistic. In Information and Computation; Dodig Crnkovic, G., Burgin, M., Eds.; World Scientific Pub Co Inc: Singapore, 2009; pp. 149-184. ISBN978-981-4295-47-5.
47. Dodig-Crnkovic G. The info-computational nature of morphological computing. In Philosophy and Theory of Artificial Intelligence. Studies in Applied Philosophy, Epistemology and Rational Ethics; Müller, V., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 5, ISBN00935301.
48. Pfeifer R., Bongard J. How the Body Shapes the Way We Think–A New View of Intelligence; MIT Press: Cambridge, MA, USA, 2006; ISBN9780262162395.
49. Witzany G. Memory and Learning as Key Competences of Living Organisms. In Memory and Learning in Plants. Signaling and Communication in Plants; Baluska, F., Gagliano, M., Witzany, G., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2018; pp. 1-16.
50. Witzany G. Introduction: Key Levels of Biocommunication of Bacteria. In Biocommunication in Soil Microorganisms; Witzany, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2011.
51. Witzany G. Viruses: Essential Agents of Life; Springer Netherlands: Dodrecht, Netherlands, 2012; ISBN9789400748996.
52. Villarreal L.P., Witzany G. Viruses are essential agents within the roots and stem of the tree of life. J. Theor. Biol. 2010.
53. Leyton M. Shape as Memory Storage. In Ambient Intelligence for Scientific Discovery. Lecture Notes in Computer Science; Yang, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3345.
54. Kandel E.R., Dudai Y., Mayford M.R. The molecular and systems biology of memory. Cell 2014.
55. Fields C., Levin M. Multiscale memory and bioelectric error correction in the cytoplasm-cytoskeleton-membrane system. Wiley Interdiscip. Rev. Syst. Biol. Med. 2018.
56. Kukushkin N.V., Carew T. J. Memory Takes Time. Neuron 2017.
57. Witzany G. Biocommunication of Archaea; Springer International Publishing: Cham, Switzerland, 2017; ISBN9783319655369.
58. Witzany G. Bio-communication of Plants. Nat. Preced. 2007.
59. Pombo O., Torres J.M., Rahman S. Special Sciences and the Unity of Science; Logic, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; ISBN978-94-007-9213-5.
60. Rosen R. Anticipatory Systems; Springer: New York, NY, USA, 1985; ISBN978-1-4614-1268-7.
61. Popper K. Objective Knowledge: An Evolutionary Approach; Oxford University Press: Oxford, UK, 1972.
62. Campbell D.T. Evolutionary epistemology. In The Philosophy of Karl Popper; Schilpp, P.A., Ed.; Open Court Publ.: La Salle, IL, USA, 1974; Volume 1, pp. 413-463.
63. Vanberg V. Cultural Evolution, Collective Learning, and Constitutional Design. In Economic Thought and Political Theory; Reisman, D., Ed.; Springer: Dordrecht, The Netherlands, 1994.
64. Thagard P. Against Evolutionary Epistemology. PSA Proc. Bienn. Meet. Philos. Sci. Assoc. 1980.
65. Kronfeldner M.E. Darwinian «blind» hypothesis formation revisited. Synthese 2010.
66. Jablonka E., Lamb M. J., Anna Z. Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life; MIT Press: Cambridge, MA, USA, 2014; ISBN9780262322676.
67. Laland K.N., Uller T., Feldman M.W., Sterelny K., Müller G.B., Moczek A., Jablonka E., Odling-Smee J. The extended evolutionary synthesis: Its structure, assumptions and predictions. Proc. R. Soc. B Biol. Sci. 2015.
68. Noble D. The Music of Life: Biology Beyond the Genome. Lavoisierfr 2006.
69. Watson R.A., Szathmáry E. How Can Evolution Learn? Trends Ecol Evol. 2016, 31, 147-157.
70. Turing A.M. Computing machinery and intelligence. In Machine Intelligence: Perspectives on the Computational Model; Routledge: New York, NY, USA, 2012; ISBN0815327684.
71. Chaitin G. Epistemology as Information Theory: From Leibniz to Ω. In Computation, Information, Cognition–The Nexus and The Liminal; Dodig Crnkovic, G., Ed.; Cambridge Scholars Pub.: Newcastle, UK, 2007; pp. 2-17. ISBN978-1-4438-0040-2.
72. Neil Gershenfeld Morphogenesis for the Design of Design A Talk by. Available online: https://www.edge.org/conversation/neil_gershenfeldmorphogenesis-for-the-design-of-design (accessed on 28 June 2020).
73. Sloman A. Meta-Morphogenesis: Evolution and Development of Information-Processing Machinery. In Alan Turing: His Work and Impact; Cooper, S.B., van Leeuwen, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; p. 849. ISBN978-0-12-386980-7.
74. Nature Gene Regulation. Available online: https://www.nature.com/subjects/gene-regulation (accessed on 28 June 2020).
75. Hewitt C. What is computation? Actor Model versus Turing’s Model. In A Computable Universe, Understanding Computation & Exploring Nature As Computation; Zenil, H., Ed.; World Scientific Publishing Company: Singapore, 2012.
76. Rozenberg G., Bäck T., Kok J.N. (Eds.) Handbook of Natural Computing; Springer: Berlin, Germany, 2012; ISBN978-3-540-92911-6.
77. Denning P. Computing is a natural science. Commun. ACM 2007, 50, 13-18.
78. Denning P., Rosenbloom P. The fourth great domain of science. ACM Commun. 2009, 52, 27-29.
79. Wang Y. On Abstract Intelligence: Toward a Unifying Theory of Natural, Artificial, Machinable, and Computational Intelligence. Int. J. Softw. Sci. Comput. Intell. 2009, 1, 1-17.
80. Crutchfield J.P., Ditto William, L., Sinha S. Introduction to Focus Issue: Intrinsic and Designed Computation: Information Processing in Dynamical Systems-Beyond the Digital Hegemony. Chaos 2010, 20, 037101.
81. Crutchfield J.P., Wiesner K. Intrinsic Quantum Computation. Phys. Lett. A 2008, 374, 375-380.
82. Collier J. Information, Causation and Computation. In Information and Computation; Dodig-Crnkovic, G., Burgin, M., Eds.; World Scientific: Singapore, 2011; pp. 89-105.
83. Zenil H. A Computable Universe. Understanding Computation & Exploring Nature as Computation; World Scientific: Singapore, 2012; ISBN978-9814374293.
84. Piccinini G. Computation in Physical Systems. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; 2017; Available online: https://plato.stanford.edu/archives/sum2017/entries/computationphysicalsystems/ (accessed on 28 June 2020).
85. Horsman C., Stepney S., Wagner R.C., Kendon V. When does a physical system compute? Proc. R. Soc. A Math. Phys. Eng. Sci. 2014, 470, 20140182.
86. Horsman D., Kendon V., Stepney S. The natural science of computing. Commun. ACM 2017, 60.
87. Horsman D., Kendon V., Stepney S., Young J.P.W. Abstraction and representation in living organisms: When does a biological systemcompute? In Representation and Reality in Humans, Animals, and Machines. Studies in Applied Philosophy, Epistemology and Rational Ethics; Springer: Cham, Switzerland, 2017; Volume 28, pp. 91-116.
88. Brooks R.A. Intelligence without representation. Artif. Intell. 1991.
89. Hauser H., Füchslin R.M., Pfeifer R. Opinions and Outlooks on Morphological Computation; e-book; 2014; ISBN978-3-033-04515-6. Available online: https://www.morphologicalcomputation.org/e-book (accessed on 28 June 2020).
90. Copeland J., Dresner E., Proudfoot D., Shagrir O. Time to reinspect the foundations? Commun. ACM 2016, 59, 34-36.
91. Turing A.M. The Chemical Basis of Morphogenesis. Philos. Trans. R. Soc. London 1952, 237, 37-72.
92. Kampis G. Self-Modifying Systems in Biology and Cognitive Science: A New Framework for Dynamics, Information, and Complexity; Pergamon Press: Amsterdam, The Netherlands, 1991; ISBN9780080369792.
93. Valiant L. Probably Approximately Correct: Nature’s Algorithms for Learning and Prospering in a Complex World; Basic Books: New York, NY, USA, 2013; ISBN978-0465032716.
94. Simon H.A. Rational choice and the structure of the environment. Psychol. Rev. 1956, 63, 129-138.
95. Sloman A., Chrisley R. Virtual machines and consciousness. J. Conscious. Stud. 2003, 10, 113-172.
96. Grossberg G.A., Carpenter S. ART 2: Self-organization of stable category recognition codes for analog input patterns. Appl. Opt. 1987, 26, 4919- 4930.
97. Mermin N.D. Making better sense of quantum mechanics. Reports Prog. Phys. 2019.
98. Müller M.P. Law without law: From observer states to physics via algorithmic information theory. Quantum 2020.
99. Vedral V. Information and physics. Information 2012, 3, 219-223.
100. Goyal P. Information physics-towards a new conception of physical reality. Information 2012, 3, 567-594.
101. Dodig-Crnkovic G. Information and energy/matter. Information 2012, 4, 751.
102. Fields C. If physics is an information science, what is an observer? Information 2012, 3, 92-123.
103. Wheeler J.A. Information, physics, quantum: The search for links. In Complexity, Entropy, and the Physics of Information; Zurek, W., Ed.; Addison-Wesley: Redwood City, CA, USA, 1990.
104. Weizcsäcker C.F. The Unity of Nature. In Physical Sciences and History of Physics; Boston Studies in the Philosophy of Science; Cohen, R.S., Wartofsky, M.W., Eds.; Springer: Dordrecht, The Netherlands, 1984. V. 82.
105. Ehresmann A.C. MENS, an Info-Computational Model for (Neuro-) cognitive Systems Capable of Creativity. Entropy 2012, 14, 1703-1716.
106. Ghosh S., Aswani K., Singh S., Sahu S., Fujita D., Bandyopadhyay A. Design and Construction of a Brain-Like Computer: A New Class of Frequency-Fractal Computing Using Wireless Communication in a Supramolecular Organic, Inorganic System. Information 2014, 5, 28-100.
107. Zenil H., Kiani N.A., Zea A.A., Tegnér J. Causal deconvolution by algorithmic generative models. Nat. Mach. Intell. 2019.
108. Cardelli L. Artificial Biochemistry. In Algorithmic Bioprocesses; Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E., Eds.; Springer: Heidelberg, Germany, 2009; pp. 429-462.
109. Cardelli L., Zavattaro G. On the computational power of biochemistry. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H., Eds.; LNCS; Springer: Heidelberg, Germany, 2008; Volume 5147, pp. 65-80.
110. Cardelli L. Morphisms of reaction networks that couple structure to function. BMC Syst. Biol. 2014.
111. Cardelli L., Tribastone M., Tschaikowski M. From electric circuits to chemical networks. Nat. Comput. 2020.
112. Fresco N. Physical Computation and Cognitive Science; Springer: Berlin, Germany, 2014; ISBN978-3-642-41374-2.
113. Devon Hjelm R., Grewal K., Bachman P., Fedorov A., Trischler A., Lavoie-Marchildon S., Bengio Y. Learning deep representations by mutual information estimation and maximization. In Proceedings of the 7th International Conference on Learning Representations, ICLR2019, New Orleans, LA, USA, 6-9 May 2019.
Рецензия
Для цитирования:
Додиг-Црнкович Г. Естественные морфологические вычисления как основа способности к обучению у людей, других живых существ и интеллектуальных машин. Философские проблемы информационных технологий и киберпространства. 2021;(1):4-34. https://doi.org/10.17726/philIT.2021.1.1
For citation:
Dodig-Crnkovic G. Natural morphological computation as foundation of learning to learn in humans, other living organisms, and intelligent machines. Philosophical Problems of IT & Cyberspace (PhilIT&C). 2021;(1):4-34. (In Russ.) https://doi.org/10.17726/philIT.2021.1.1