Biophysical approach to modeling reflection: basis, methods, results
https://doi.org/10.17726/philIT.2023.2.9
Abstract
The approach used by physics is based on the identification and study of ideal objects, which is also the basis of biophysics, in combination with von Neumann heuristic modeling and functional fractionation according to R.Rosen is discussed as a tool for studying the properties of consciousness. The object of the study is a kind of line of analog systems: the human brain, the vertebrate brain, the invertebrate brain and artificial neural networks capable of reflection, which is a key property characteristic of consciousness. Reflection in the broad sense of the word, understood as an internal representation of the external world, is characteristic of a wide range of animals, and some of them (bumblebees, fish) even demonstrate reflection in the narrow sense of the word, understood as an inner self-representation. This complex behavior is realized by miniature brains of ~1 million neurons. The use of simple recurrent neural networks (RNNs) to obtain answers to general questions is illustrated. For example, it has been shown a small RNS is able to pass delayed matching to sample (DMTS) test, forming an individual dynamic representation of the received stimulus, allowing decoding by a special external neural detector. . It has been demonstrated in the reflexive game “even-odd”, the RNS has a huge advantage over a multi-layered neural network, with the same and a larger number of neurons – reflection defeats regression. It was found that the asymmetry of outcomes in the odd-even game, which was explained by various causes, including psychological ones – “it’s easier to catch up than to run away”, is reproduced in the game of two RNNs. Obviously, there are no psychological causes here and the advantage of the player playing for “even” is explained by the more complex strategy of the “odd” player – he needs to predict the opponent’s move and choose the opposite one.
About the Authors
S. I. BartsevRussian Federation
Bartsev Sergey Igorevich, Doctor of Physical and Mathematical Sciences, Professor, Department of Biophysics, Chief Researcher, Laboratory of Theoretical Biophysics
Krasnoyarsk
G. M. Markova
Russian Federation
Markova Galiya Muratovna, Postgraduate Student, Assistant, Department of Biophysics, Laboratory Assistant, Laboratory of Theoretical Biophysics
Krasnoyarsk
A. I. Matveeva
Russian Federation
Matveeva Alevtina Igorevna, Postgraduate student
Krasnoyarsk
References
1. Seth A. K., Bayne T. Theories of consciousness // Nature Reviews Neuroscience. – 2022. – Vol. 23. – № 7. – P. 439-452.
2. Васильев В. В. Трудная проблема сознания. – М.: Прогресс-Традиция, 2009. – 272 с. (Vasil’ev V. V. Hard problem of consciousness. – M.: Progress-Traditsiya, 2009. – 272 p.)
3. Ревонсуо А. Психология сознания. – СПб.: Питер, 2013. – 309 с. (Revonsuo A. Psychology of consciousness. – SPb.: Piter, 2013. – 309 p.)
4. Чалмерс Д. Сознающий ум. В поисках фундаментальной теории. – М.: УРСС: Книжный дом «ЛИБРОКОМ», 2003. – 512 с. (Chalmers D. Conscious mind. In search of a fundamental theory. – M.: URSS: Knizhniy dom «LIBROKOM», 2003. – 512 p.)
5. Пенроуз Р. Тени разума: в поисках науки о сознании. –М.-Ижевск:Институт космических исследований, 2005. – 688 с. (Penrose R. Shadows of the Mind: In Search of a Science of Consciousness // R. Penrose. – M.- Izhevsk: Institut kosmicheskih issledovanij, 2005. – 688 p.)
6. Хренников А.Ю. Моделирование процессов мышления в р-адических системах координат. – М.: ФИЗМАТЛИТ, 2004. – 296 с. (Khrennikov A. Yu. Modeling of thinking processes in p-adic coordinate systems. – M.: FIZMATLIT, 2004. – 296 p.)
7. Crick F., Koch C. Towards a neurobiological theory of consciousness // Seminars in the Neurosciences // Saunders Scientific Publications. – 1990. – Vol. 2. – P. 263-275.
8. Crick F., Koch C.Aframework for consciousness// Nature neuroscience. – 2003. – Vol. 6. – № 2. – P. 119-126.
9. Frith C.The quest for consciousness: A neurobiological approach // American Journal of Psychiatry. – 2005. – Vol. 162. – № 2. – P. 407-407.
10. Барцев С.И., Барцева О.Д. Эвристические нейросетевые модели в биофизике: приложение к проблеме структурно-функционального соответствия. –Красноярск:Сибирский федеральный университет, 2010. – 115 с. (Bartsev S.I., Bartseva O.D. Heuristic neural network models in biophysics: application to the problem of structural-functional correspondence. – Krasnoyarsk: Sibirskij federal’nij universitet, 2010. – 115 p.)
11. Блюменфельд Л. А. Решаемые и нерешаемые проблемы биологической физики. – М.: Едиториал УРСС, 2002. – 160 с. (Blumenfeld L.A. Solvable and unsolvable problems of biological physics. – M.: Editorial URSS, 2002. – 160 p.)
12. Моровиц Г. Исторический очерк // Теоретическая и математическая биология. – М.: Мир, 1968. – С. 34-48. (Morovits G. Historical sketch // Teoreticheskaya and matematicheskaya biologiya. – M.: Mir, 1968. – P. 34-48.)
13. Фон Нейман Дж. Теория самовоспроизводящихся автоматов. – М.: Мир, 1971. – С. 382. (Von Neumann J.Theory of self-reproducing automata. – M.: Mir, 1971. – P. 382.)
14. Бернал Дж. Д. Молекулярная структура, биохимическая функция и эволюция // Теоретическая и математическая биология. – М.: Мир, 1968. – С. 110-151. (Bernal J. D. Molecular structure, biochemical physics and evolution / Teoreticheskaya i matematicheskaya biologiya. – M. Mir, 1968. – P. 110-151.)
15. Рашевский Н. Модели и математические принципы в биологии // Теоретическая и математическая биология. – М.: Мир, 1968. – 448 с. (Rashevsky N. Models and mathematical principles in biology // Teoreticheskaya and matematicheskaya biologiya. – M.: Mir, 1968. – 448 p.)
16. Rosen R. A relational theory of biological systems // The bulletin of mathematical biophysics. – 1959. – Vol. 21. – P. 109-128.
17. Lennox J.Robert Rosen and relational system theory: an overview // PhD Dissertation. – The City University of New York, 2022. – 195 p.
18. Mikulecky D.C. Complexity, communication between cells, and identifying the functional components ofliving systems:some observations // Acta Biotheoretica. – 1996. – Vol. 44. – № 3-4. – P. 179-208.
19. Bickhard M. H. Consciousness and reflective consciousness // Philosophical Psychology. – 2005. – Vol. 18. – № 2. – P. 205-218.
20. Dehaene S., Lau H., Kouider S.What is consciousness, and could machines have it? // Science. – 2017. – Vol. 358. – № 6362. – P. 486-492.
21. Land M. F. Do we have an internal model of the outside world? // Philosophical Transactions of the Royal Society B: Biological Sciences. – 2014. – Vol. 369. – № 1636. – P. 20130045.
22. Chang A. Y. C., Biehl M., Yu Y., Kanai R.Information closure theory of consciousness // Frontiers in Psychology. – 2020. – Vol. 11. – P. 1504.
23. Lamme V.A. F. Challenges for theories of consciousness: seeing or knowing, the missing ingredient and how to deal with panpsychism // Philosophical Transactions of the Royal Society B: Biological Sciences. – 2018. – Vol. 373. – № 1755. – P. 20170344.
24. Zalucki O., Van Swinderen B.What is unconsciousness in a fly or a worm? Areview of general anesthesia in different animal models// Consciousness and cognition. – 2016. – Vol. 44. – P. 72-88.
25. Nieder A., Wagener L., Rinnert P. A neural correlate of sensory consciousness in a corvid bird // Science. – 2020. – Vol. 369. – № 6511. – P. 1626-1629.
26. Kohda M. et al. Further evidence for the capacity of mirrorself-recognition in cleaner fish and the significance of ecologically relevant marks // PLoS biology. – 2022. – Vol. 20. – № 2. – P. e3001529.
27. Alem S., Perry C. J., Zhu X., Loukola O. J., Ingraham T., Søvik E., Chittka L.Associative mechanisms allow for social learning and cultural transmission of string pulling in an insect // PLoS biology. – 2016. – Vol. 14. – № . 10. – P. e1002564.
28. Avarguès-Weber A., Giurfa M.Conceptual learning by miniature brains // Proceedings of the Royal Society B: Biological Sciences. – 2013. – Vol. 280. – № 1772. – P. 20131907.
29. Howard S. R., Avarguès-Weber A., Garcia J. E., Greentree A. D., Dyer A. G. Numerical ordering of zero in honey bees // Science. – 2018. – Vol. 360. – № 6393. – P. 1124-1126.
30. Loukola O. J., Perry C. J., Coscos L., Chittka L.Bumblebees show cognitive flexibility by improving on an observed complex behavior // Science. – 2017. – Vol. 355. – № 6327. – P. 833-836.
31. Ulrich Y., Saragosti J., Tokita C.K., Tarnita C. E., Kronauer D. J.C. Fitness benefits and emergent division of labour at the onset of group living // Nature. – 2018. – Vol. 560. – № 7720. – P. 635-638.
32. Лефевр В. А. Рефлексия. – М.: Когито-Центр, 2003. – 496 с. (Lefebvre V.A. Reflection. – M.: Kogito-Tsentr, 2003. – 496 p.)
33. Peters F.Theories of consciousness as reflexivity // The Philosophical Forum. – 2013. – Vol. 44. – P. 341-372.
34. Лефевр В. А. Лекции по теории рефлексивных игр. – М.: КогитоЦентр, 2009. – 218 с. (Lefebvre V.A. Lectures on the theory of reflexive games. – M.: Kogito-Tsentr, 2009. – 218 p.)
35. Camerer C. F., Ho T. H., Chong J.K. A cognitive hierarchy model of games // The Quarterly Journal of Economics. – 2004. – Vol. 119. – № 3. – P. 861-898.
36. Giurfa M. Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well //Journal of comparative physiology A. – 2007. – Vol. 193. – № 8. – P. 801-824.
37. Барцев С. И., Батурина П. М., Маркова Г. М. Нейросетевое декодирование информации о внешнем стимуле по паттерну нейронной активности рекуррентной нейронной сети // Доклады Российской академии наук. Науки о жизни. – 2022. – Т. 502. – № 1. – С. 48-53. (Bartsev S.I., Baturina P. M., Markova G. M. Neural network-based decoding input stimulus data based on recurrent neural network neural activity pattern // Doklady Biological Sciences. – M.: Pleiades Publishing, 2022. – Vol. 502. – № 1. – P. 1-5.)
38. Bartsev S.I., Markova G. M. Decoding of stimuli time series by neural activity patterns of recurrent neural network // Journal of Physics: Conference Series. – IOP Publishing, 2022. – Vol. 2388. – № 1. – P. 012052.
39. Crowe D.A., Averbeck B. B., Chafee M. V. Rapid sequences of population activity patterns dynamically encode task-critical spatial information in parietal cortex // Journal of Neuroscience. – 2010. – Vol. 30. – № 35. – P. 11640-11653.
40. Meyers E. M., Freedman D. J., Kreiman G., Miller E.K., Poggio T. Dynamic population coding of category information in inferior temporal and prefrontal cortex // Journal of neurophysiology. – 2008. – Vol. 100. – № 3. – P. 1407-1419.
41. Bartsev S., Markova G. Recurrent and multi-layer neural networks playing Even-Odd: reflection against regression // IOP Conference Series: Materials Science and Engineering. – IOP Publishing, 2020. – Vol. 734. – № 1. – P. 012109.
42. Eliaz K., Rubinstein A. Edgar Allan Poe’s riddle: Framing effects in repeated matching pennies games // Games and Economic Behavior. – 2011. – Vol. 71. – № 1. – P. 88-99.
Review
For citations:
Bartsev S.I., Markova G.M., Matveeva A.I. Biophysical approach to modeling reflection: basis, methods, results. Philosophical Problems of IT & Cyberspace (PhilIT&C). 2023;(2):120-139. (In Russ.) https://doi.org/10.17726/philIT.2023.2.9