Preview

Philosophical Problems of IT & Cyberspace (PhilIT&C)

Advanced search

Connectionist models of mind: scales and the limits of machine imitation

https://doi.org/10.17726/philIT.2020.2.4

Abstract

This paper is devoted to some generalizations of explanatory potential of connectionist approaches to theoretical problems of the philosophy of mind. Are considered both strong, and weaknesses of neural network models. Connectionism has close methodological ties with modern neurosciences and neurophilosophy. And this fact strengthens its positions, in terms of empirical naturalistic approaches. However, at the same time this direction inherits weaknesses of computational approach, and in this case all system of anticomputational critical arguments becomes applicable to the connectionst models of mind. The last developments in the field of deep learning gave rich empirical material for cognitive sciences. Multilayered networks, mathematical models of associative dynamics of learning, self-organizing neuronets and all that allow to explain the principles of human conceptual organizing and after this to emulate these processes in computer systems. At all engineering achievements of this technology there is a traditional criticism from representatives of cognitive psychology who cannot accept a thesis about learning ability of a neuronet on the basis of redistribution of scales. Process of learning of natural intelligence, according to cognitive models, happens due to attraction of knowledge broadcast in a symbolical form (mental representations, concepts) at the expense of the systems of output knowledge expressed in the propositional contents. Some philosophical aspects of «neural metaphor» in modern cognitive sciences create the problem field which demands comprehensive understanding, the first step towards which is taken in this work.

About the Author

P. N. Baryshnikov
Pyatigorsk State University
Russian Federation


References

1. Бакусов Л.М., Ильясов Б.Г., Рамазанов М.Д., Сафин Ш.М. Биологические вычисления: общие принципы // Проблемы управления. - 2006. - Т. 1. - С. 61-68

2. Барышников П.Н. Метафорические основания компьютационализма в когнитивных науках и философии сознания // Философия науки и техники. - 2018. - Т. 23, № 2. - С. 61-72

3. Воеводин В.В., Воеводин В.В. Параллельные вычисления. - СПб.: БХВ - Санкт-Петербург, 2002

4. Грибачев В. Настоящее и будущее нейронных сетей // Компоненты и технологии. - 2006. - № 5. - С. 146-150

5. Дубинный М. Рождение виртуальной клеточной биологии. Биомолекула. URL: https://biomolecula.ru/articles/rozhdenie-virtualnoi-kletochnoi-biologii

6. Патнэм Х. Философия сознания. - М.: Дом интеллектуальной книги, 1990

7. Редозубов А.В. Логика сознания. Часть 9. Искусственные нейронные сети и миниколонки реальной коры. 2016. URL: https://habrahabr.ru/post/317712/

8. Фодор Д., Пылишин З. Коннекционизм и когнитивная структура. Критический обзор / Язык и интеллект; Петров В.В. (ред.). - М.: Издательская группа «Прогресс», 1995. - С. 230-314

9. Цепцов В.А. От критики коннекционизма к гибридным системам обработки информации / Познание. Общество. Развитие; Ушаков Д.В. (ред.). - М.: Институт психологии РАН, 1996

10. Bechtell W., Abrahamsen A. Connectionism and the Mind. - Basil Blackwell, Cambridge,1991

11. Glasser M.F., Smith S.M., Marcus D.S., Andersson Jesper L.R., Auerbach E.J., Behrens Timothy E.J, Coalson T.S., Harms M.P., Jenkinson M., Moeller S., Robinson E.C., Sotiropoulos S.N., Xu J., Yacoub E., Ugurbil K. and Van Essen David C. The Human Connectome Project's neuroimaging approach // Nat Neurosci. - 2016. - Vol. 19, No. 9. URL: http://dx.doi.org/10.1038/nn.4361

12. Google Brain Team. URL: https://research.google/teams/brain

13. Jordan M.I., Touretzky D.S. Advances in neural information processing systems. - Kaufmann, San Mateo, Calif, 1997

14. Karr J.R., Sanghvi J.C., Macklin D.N., Gutschow M.V., Jacobs J.M., Boliva B., Assad-Garcia N., Glass J.I. and Covert M.W. A Whole-Cell Computational Model Predicts Phenotype from Genotype // Cell. - 2012. - Vol. 150, No. 2. - P. 389-401

15. Kolesnikov-Jessop S. Automatons and Ingenuity // The New York Times. - 2012. - March, 8

16. MacCullach W.S. and Pitts W. A logical calculus of the ideas immanent in nervous activity // Bulletin of mathematical biophysics. - 1943. - Vol. 5. - P. 115-133

17. Massaro D.W. Some criticisms of connectionist models of human performance // Journal of Memory and Language. - 1988. - Vol. 27, No. 2. - P. 213-234

18. Pinker S. and Price A. On language and connectionism: Analysis of a parallel distributed processing model of language acquisition / Pinker S. and Mehler J. (Eds.). Connections and symbols. - MIT Press, Cambridge, Mass., 1988. - P. 73-193

19. Vaucanson J. Le mécanisme du fluteur automate. URL: https://gallica.bnf.fr/ark:/12148/bpt6k108299h/f1.image


Review

For citations:


Baryshnikov P.N. Connectionist models of mind: scales and the limits of machine imitation. Philosophical Problems of IT & Cyberspace (PhilIT&C). 2020;(2):42-58. (In Russ.) https://doi.org/10.17726/philIT.2020.2.4

Views: 284


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-3763 (Online)