Preview

Philosophical Problems of IT & Cyberspace (PhilIT&C)

Advanced search

Proof, understanding, and computers

https://doi.org/10.17726/philIT.2020.1.5

Abstract

The article analyzes the concept of understanding in mathematical discourse. The role of understanding in two types of proof - traditional conceptual and computer-based-is considered. It is shown that the concept of understanding in the framework of the philosophy of mathematics for the case of computer proof is most interesting in the works of the late Wittgenstein. Next, we consider the question of what should be a philosophical theory in which this kind of understanding can be part of the conceptual apparatus. The requirements for such a theory include explanations of the various types of «competent mathematical behavior» required of computer program creators. Since these programs are not limited to a particular search strategy, but are «understanding» to a certain extent, the desired philosophical theory should bring «human understanding» and «computer understanding» closer together.

About the Author

V. V. Tselishchev
Siberian Branch of Russian Academy of Science
Russian Federation


References

1. Raine K. Autobiographies. L.: Skoob Books, 1991.

2. O’Hear A. Philosophy - Wisdom or Technique? // Royal Institute of Philosophy Supplement. 2009. Vol. 65. P. 351-361.

3. Хакинг Я. Почему вообще существует философия математики. М.: Канон+, 2020.

4. Poincare H. Science and Method. N.Y.: Dover Publications, 2003.

5. Thurston W. On Proof and Progress in Mathematics // Bulletin of American Mathematical Society. 1994. Vol. 30. №. 2. P. 161-177.

6. Netz R. Lucid Proof. Cambridge: Cambridge University Press, 2009.

7. Putnam H. Reason, Truth, and History // Cambridge: Cambridge University Press, 1982/

8. Benacerraf P. Skolem and Sceptic // Proceedings of Aristotelian Society, Suppl. 1985. Vol. 59. P. 85-113.

9. Wright C. Skolem and the Sceptic // Proceedings of Aristotelian Society, Suppl. 1985. Vol. 59. P. 117-137.

10. Крипке С. Витгенштейн о правилах и индивидуальном языке. Томск: Издательство Томского университета, 2005.

11. Avigad J. Understanding Proofs // The Philosophy of Mathematical Practice // ed. Mancosu P. Oxford: Oxford University Press, 2008. P. 317- 353.

12. Суровцев В. А., Ладов В. А. Витгенштейн и Крипке: следование правилу, скептический аргумент и точка зрения сообщества. Томск: Издательство Томского университета, 2008.

13. Витгенштейн Л. Замечания по основаниям математики. Часть VI. Перевод В. А. Суровцева // Я. Хинтикка. О Витгенштейне. М.: Канон+, 2013. С. 237-238.

14. Райл Г. Понятие сознания. М.: Идея-Пресс, 1999.


Review

For citations:


Tselishchev V.V. Proof, understanding, and computers. Philosophical Problems of IT & Cyberspace (PhilIT&C). 2020;(1):54-67. (In Russ.) https://doi.org/10.17726/philIT.2020.1.5

Views: 189


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-3763 (Online)